Experiment 5

Molar Conductivity of Electrolytes

Name :	Group :
Matric no. :	Date of exp. :
Lecturer :	

(Use the ample space provided for calculations and your own personal notes)

DATA PROCESSING AND CALCULATIONS

Tables 1(a) -1(d) are for NaCl, CH_3COONa , HCl and CH_3COOH solutions respectively.

Table 1(a): Electrolyte = NaCl

c/mol dm ⁻³	$\Lambda/mS \ cm^{-1}$				$\sqrt{c}/(mol^{1/2}dm^{-3/2})$
	1 st reading	2 nd reading	3 rd reading	average	

Table 1(b): Electrolyte = CH₃COONa

c/mol dm ⁻³	$\Lambda / mS \ cm^{-1}$				$\sqrt{c}/(mol^{1/2}dm^{-3/2})$
	1 st reading	2 nd reading	3 rd reading	average	

Table 1(c): Electrolyte = HCl

c/mol dm ⁻³	$\Lambda / mS \ cm^{-1}$				$\sqrt{c}/(mol^{1/2}dm^{-3/2})$
	1 st reading	2 nd reading	3 rd reading	average	

Table 1(d): Electrolyte = CH₃COOH

c/mol dm ⁻³	$\Lambda / mS \ cm^{-1}$				$\sqrt{c}/(mol^{1/2}dm^{-3/2})$
	1 st reading	2 nd reading	3 rd reading	average	

Extra space for repeats: Electrolyte =

c/mol dm ⁻³	$\Lambda / mS \ cm^{-1}$			$\sqrt{c}/(mol^{1/2}dm^{-3/2})$	
	1 st reading	2 nd reading	3 rd reading	average	

Electrolyte	Literature value, Λ_0	Experimental value Λ_0		
type	(298.15 K) / S m ² mol ⁻¹	\pm / S m ² mol ⁻¹ ; (T=±K)		
HCI	426.16 x 10 ⁻⁴	\pm (T= \pm K)		
NaCl	126.45 x 10 ⁻⁴	\pm (T= \pm K)		
CH₃COONa	91.0x 10 ⁻⁴	\pm (T= \pm K)		
CH₃COOH	390.7x 10 ⁻⁴	± (T= ± K)		

TABLE 2: Comparison of values of Λ_0 derived from experiment to that from literature.

TABLE 3: Degree of dissociation index α and the dissociation constant K_a for acetic acid.

These measurements were conducted at temperature = _____± ___= K . Literature value of K_a =1.8 x 10 ⁻⁵ (mol dm⁻³) at 298.15K .

Concentration C / (mol dm ⁻³)	Molar conductivity, λ _m / S m² mol ⁻¹	Molar conductivity at infinite dilution, λ_o / S m ² mol ⁻¹	α from eqn. (7)	K_a from eqn. (6)

Average $K_a = \underline{\qquad} \pm \underline{\qquad}$.

3. DISCUSSION

- 1. Relative to your error bounds, are the values for Λ_0 and K_a derived from experiment close to the literature values?
- 2. The degree of dissociation is given by $\alpha = \Lambda_m / \Lambda_o$. Why is this expression not very accurate? How can it be corrected so that it becomes more accurate? [Hint: refer to the Onsager equation]